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My (co-)first-author publications [1, 2, 3, 4] since 2018 have been focused on the problems of reinforcement
learning (RL), especially on (1) Imitation Learning (IL)—learning to mimic expert’s behavior—(2)
Inverse Reinforcement Learning (IRL)—acquiring a reward that rationalizes expert’s behavior—and (3)
adversarial IL and IRL—IL and IRL algorithms with adversarial training objectives [5] (See Figure 1 ).
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Figure 1. Iterative training of adversarial imitation learning

Practically, IL and IRL are crucial to learn from human demonstrations, enabling us to solve many
practical sequential decision-making problems where well-designed rewards are not available, and thus,
RL is not directly applicable. My publications have solved various issues of IL or IRL, and their
contributions are respectively summarized below.
◦ Bayesian perspective for adversarial IL [1, NeurIPS 2018 Spotlight]
We propose a probabilistic graphical model for adversarial IL and show that discriminator training of
adversarial IL can be seen as finding out the point estimate for maximum likelihood. Motivated by
this observation, we consider posterior distribution over discriminators and use posterior predictive
reward for policy optimization. We empirically show this approach highly improves the sample
efficiency of adversarial IL.
◦ Simplified adversarial IL without reinforcement learning [2, NeurIPS 2020 Spotlight]
Existing adversarial ILs commonly require the internal policy optimization through reinforcement
learning, which increases algorithmic complexity and may cause unstable training. In this work, a
structured discriminator was proposed, where the discriminator involves policy networks as its internal
component. Since learning with the proposed discriminator simultaneously optimizes policies, it is
possible to imitate expert’s behavior only via supervised learning.
◦ Generalization of maximum-entropy IRL [3]

Regularized RL [6] generalizes entropy-regularized RL—that regularizes Shannon entropy of learner’s
policy—with a class of arbitrary convex policy regularizers. For the regularized IRL—a problem of
seeking a reward such that an expert becomes optimal with regularized RL— we propose tractable
solutions and a practical algorithm, which has not been done previously. This generalizes maximum-
entropy IRL [7] which has motivated many modern IL and IRL algorithms.
◦ Scalable and sample-efficient multi-agent adversarial IRL [4]

Existing adversarial IL and IRL for multi-agent problems have been validated for a small number of
agents. We empirically combine multi-agent RL algorithms with various discriminator models and
validate the multi-agent scalability of each combination. As a result, Multi-agent Actor-Attention-Critic
(MAAC) [8] with decentralized discriminator for each agent highly outperforms other combinations as
well as baseline algorithms, shown to be scaled up to tens of agents.

My plans for future works include (1) seeking policy regularizers for robust IL, (2) exploiting the reward
optimality condition for RL, and (3) IL with probabilistic planning. More details on my publications and
plans are explained in the following sections.
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Preliminaries on Imitation Learning
Reinforcement learning (RL) has been successfully applied to many challenging tasks including robotics
and games, and sometimes it has significantly outperformed human strategies. One crucial assumption
of RL is a well-defined reward describing desirable behaviors in each task, which comes from the
mathematical framework of Markov decision processes [9]. However, unlike video games where one
can easily define the reward from scores, designing appropriate rewards is often cumbersome in many
real-world applications.

Alternative to RL from scratch, we assume there is an expert, instead of the reward in RL. The
learner’s objective is to mimic the expert’s behavior, mostly with the expert demonstration, e.g., human
movements and doctor’s prescription. Traditionally, behavioral cloning via supervised learning has been
regarded as a simple way of IL. However, behavioral cloning was shown to suffer from the covariate
shift issue [10], and an IL via Inverse Reinforcement Learning (IRL) [11]—learning the expert’s reward
from the demonstration followed by applying RL on that reward—has been considered. Particularly,
Maximum-Entropy IRL (MaxEntIRL) [7]—an IRL method that penalizes Shannon entropy of the
learner’s policy during training—has been widely used [12].

More recently, Generative Adversarial Imitation Learning (GAIL) [13] and its variant for IRL, Adversarial
Inverse Reinforcement Learning (AIRL) [14], have been proposed. Based on MaxEntIRL, GAIL and
AIRL have applied generative adversarial networks [5] for IL and IRL, respectively, and have shown
remarkable performances on high-dimensional tasks. Motivated by generative adversarial networks, both
GAIL and AIRL iteratively optimize (1) a discriminator—a binary classifier to differentiate whether
behavioral samples are from the expert demonstration or not—and (2) the learner’s policy by using deep
RL and the reward defined by the discriminator (See Figure 1 ). Later, GAIL and AIRL are extended to
be applicable for multi-agent IL and IRL problems [15, 16].

A Bayesian Approach to GAIL [1]

Due to GAIL’s internal RL procedure—which requires the samples from environment interactions—GAIL
suffers from the problem of sample efficiency as general RL algorithms do. To enhance the sample
efficiency of GAIL, we consider the probabilistic graphical model of GAIL and its relevant Bayesian
perspective.
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Figure 2. A probabilistic graphical model for GAIL

As shown in Figure 2, the graphical model contains random variables such as state-action pairs zt = (st, at)
and labels ot which become 1, if the state-action pair comes from the expert, and 0, otherwise, for
t = 1, ..., T . Additionally, each state-action pair is assumed to be sampled from either the learner
(superscript A) or the expert (superscript E). For such a graphical model, we define the discrimination
optimality event ED = {oA1 = · · · = oAT = 0, oE1 = · · · = oET = 1}—a probabilistic event that indicates
the perfect classification—and the imitation optimality event EI = {oA1 6= 0 or · · · or oAT 6= 0}—a
probabilistic event that says the discriminator is fooled.

With such a graphical model, GAIL’s discriminator and policy updates are shown to be the max-
imum likelihood estimations with events ED and EI , respectively. Instead of the point estimate from
maximum likelihood, we consider the posterior distribution for discriminators and use a posterior
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predictive reward for the RL procedure. It can be empirically shown that using the posterior predictive
reward is shown to highly improve the sample efficiency.

Adversarial IL without RL [2]

Both GAIL and AIRL iteratively optimize a discriminator and the learner’s policy via RL. However, such
an alternated optimization is known to be delicate in practice since it compounds unstable adversarial
training and uses deep RL that requires considerable resources for engineering.

We remove the burden of the RL part by leveraging a novel discriminator formulation. The con-
tribution of our work comes from using the discriminator D(s, a;π, πG) explicitly conditioned on two
policies: πG(a|s)—a policy from the previous iteration and fixed during discriminator training—and
π(a|s)—a policy which can be updated during discriminator training. For example, one of our methods
uses the discriminator D(s, a;π, πG) = π(a|s)

π(a|s)+πG(a|s) and is optimized by updating the policy π of D
when binary classification loss is minimized for training D. After D is optimized, its inherent policy π is
shown to recover the expert’s policy.
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Figure 3. Our method without RL

This approach only requires the binary classification during training, enabling us not to use the policy
optimization through deep RL algorithms (See Figure 3 ). That is, our formulation effectively cuts by
half the implementation and computational burden of GAIL and AIRL by removing RL steps. We show
on a variety of tasks that our simpler approach is competitive to existing adversarial IL methods.

Regularized Inverse Reinforcement Learning [3]

While Shannon entropy is often used as a policy regularizer [7], Geist et al. [6] recently proposed a
theoretical foundation of regularized Markov decision processes (MDPs)—a framework that uses arbitrary
strongly convex functions as policy regularizers. Here, one crucial advantage is that an optimal policy
uniquely exists, whereas multiple optimal policies may exist in the absence of policy regularization.

Thanks to this advantage, [6] showed that IRL in regularized MDPs—regularized IRL—does not contain
degenerate solutions—any constant can be a solution for IRL in unregularized MDPs. Nonetheless, ana-
lytical solutions and practical algorithms for regularized IRL—other than maximum-(Shannon-)entropy
IRL (MaxEntIRL) [7]—have not yet been proposed.

We propose tractable solutions for regularized IRL problems. We show that RL with our IRL solutions
(rewards) is equivalent to minimizing average Bregman divergence [17] between the learner and the expert
policies. Our approach covers MaxEntIRL when Shannon entropy is considered to be a policy regularizer.

We devise Regularized Adversarial Inverse Reinforcement Learning (RAIRL), a practical sample-based
method for policy imitation and reward learning in regularized MDPs, which generalizes AIRL, and
empircially validate RAIRL on both discrete and continuous control tasks.

Scalable Multi-Agent Inverse Reinforcement Learning [4]

Multi-Agent AIRL (MA-AIRL) [15, 16] is a recent approach that applies single-agent AIRL to multi-agent
problems where we seek to recover both policies for multiple learners and reward functions that promote
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expert-like behavior. However, MA-AIRL has only been validated empirically for small numbers of
agents—its applicability to many agents remains an open question.

We seek a multi-agent IRL method that is more sample-efficient and is applicable to larger numbers of
agents than previous works. Specifically, we employ Multi-agent Actor Attention Critic (MAAC) [8]—
a scalable off-policy multi-agent RL method via attention mechanism [18]—for the RL inner loop
of the IRL procedure. Then, we empirically tested our method with various discriminator models—
centralized/decentralized/attention-based discriminators—which are used for the reward learning of the
IRL procedure.

In doing so, we find out the MA-AIRL method that is highly sample-efficient compared to state-
of-the-art baselines for the environments up to tens of agents where the baselines struggle to learn.
Moreover, the RL agents trained with the rewards acquired by our method better match the experts
than those trained on the rewards derived from the baselines. Finally, our method requires far fewer
environment interactions, particularly as the number of agents increases.

Conclusion and Future Works
There has been a huge advance in modern IL and IRL along with a success with deep RL algorithms,
and I believe IL and IRL will become more crucial to utilize human knowledge on practical domains.
This motivates me to think of tentative research directions which are deeply related to my publications:
◦ Robust imitation learning with novel policy regularizer and imitation loss

In my work on regularized IRL [3], the key ingredient of generalization is the Bregman divergence [17]
which covers a wide range of probabilistic divergences and has often appeared machine learning
literature other than IRL. Recently in [19], a novel loss function motivated by the Bregman divergence
was proposed for supervised learning, shown to effectively improve the robustness of classification
w.r.t. outliers. Since human demonstrations are often noisy in practice—mostly coming from multiple
human experts—it would be interesting to consider which policy regularizers and loss functions can
make IL robust for the imperfect demonstrations.
◦ Exploiting the reward optimality condition to improve RL

From the mathematical derivation of my work [3], it can be shown that there exists a condition that
the reward, value and policy should satisfy at the optimality—where maximum expected return is
achieved in regularized RL—but existing works have not utilized this condition to the best of my
knowledge. Motivated by this observation, we may use structured networks, e.g., value network that
inherits policy network as was done in [20]. I believe this approach may highly simplify neural
network models and improve the performance of RL.
◦ IL with probabilistic planning
Recent advances in simulators and Sim2Real transfer make learning from simulators portable to
real-world applications, and I expect the role of planning becomes more crucial in practice. However,
only a few works on IL with planning (e.g. [21]) have been proposed. One of my plans is to bridge
IL with control-as-inference frameworks [22] in a rigorous way and apply probabilistic planning [23]
to planning-based IL with simulators so that we can exploit existing sequential Bayesian inference
methods for IL. I believe this approach will outperform model-free IL baselines and be more
computationally-efficient than planning-based IL.
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